

College W&M Colorado Sch Mines

Columbia U

General Atomics

Johns Hopkins U

Nova Photonics

Old Dominion U

New York U

Princeton U

Think Tank, Inc.

Purdue U

UC Davis

UC Irvine

U Colorado

U Maryland

U Rochester

U Wisconsin

U Washington

U Illinois

UCLA

UCSD

CompX

INEL

LANL

LLNL

MIT

ORNL

PPPL

PSI

SNL

l odestar

PL W UNIVERSITY of

"Snowflake" divertor characterization in NSTX

Supported by

V. A. Soukhanovskii, LLNL and NSTX Team

Boundary Physics TSG Break-out Session NSTX Research Forum Princeton, NJ 2 December 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI KAIST** POSTECH ASIPP ENEA. Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep **U** Quebec

Office of

U.S. DEPARTMENT OF

ENERGY Science

"Snowflake" divertor configuration:

theory predicts many attractive edge physics features

- "Snowflake" divertor (SFD) configuration proposed and studied theoretically by D. D. Ryutov (LLNL)
 - Phys. Plasmas 14, 064502 (2007)
 - Phys. Plasmas, 15, 092501 (2008)
 - 34th EPS Conference on Plasma Phys. Warsaw, 2 6 July 2007 ECA Vol.31F, D-1.002 (2007)
 - Paper IC/P4-8 at IAEA FEC 2008
- SFD is obtained by creating a second-order poloidal null in the (lower) divertor with existing divertor coils
- Two cases SFD-plus and SFD-minus
- Predicted properties
 - Large flux expansion (*B_p*/*B* small) and long parallel connection length
 - Null-pt flux tube squeezing barrier for turbulence
 - Possibility of ELM control (increased edge magn. shear)
 - Enhanced null-point *grad B* drift (C. S. Chang's X-pt transport)

SFD-plus and SFD-minus

NSTX can make a large contribution to the novel divertor geometry development for future devices

- XP 924 (2009) Initial "snowflake" divertor studies in NSTX (0.5 day)
 - Obtained "snowflake" configurations for 100's ms
 - Magnetic configuration very large flux expansion, longest connection length
 - Detachment of divertor OSP,
 - No core confinement degradation, reduced P_{rad} , reduced carbon density
- On-going effort to develop and improve "snowflake" control
 - Collaboration with GA and LLNL on snowflake divertor configuration control development (E. Kolemen et. al, proposal in ASC TSG session)
 - Work approved on NSTX to create reversed PF1B capability for improved snowflake stability and control development (Soukhanovskii et. al, proposal in ASC TSG session)
- NSTX is making a unique contribution among high-power medium and large tokamaks
 - TCV has been experimenting with "snowflake" divertor
 - "Snowflake" configuration is a candidate for heat flux mitigation in NSTX-U

Proposal would address "snowflake" divertor characterization in a 1 day experiment

- "Snowflake" dviertor configuration will be obtained as in 2009 by using PCS OSP control and adjusting PF3L (squareness)
- SOL and divertor transport and turbulence
 - Heat flux reduction, heat flux scaling
 - Detachment characteristics
 - Impurity sources and transport
 - Comparison of midplane and divertor turbulence characteristics
 - Synergy with LLD pumping
- Pedestal stability
 - Magnetic shear measurements
 - Stability calculations (kinetic EFITS, edge MHD stability codes
 - ELM characteristics

SFD configuration shows highest flux expansion at strike point and longest connection length

Configuration	Flux expansion	<i>L_x</i> (m)	L _{tot} (m)
SFD	68.1	16.3	36.5
Low δ	4.3	8.4	19.6
High δ	10.0	4.5	15.0

Divertor profiles indicate heat flux reduction, detachment of outer strike point region

7 of 6

Gas puff imaging shows that blobs move radially at the same velocity regardless of SFD or SD

- The "average" trajectories from the time-delayed cross correlations: each data point is the location of the maximum in the delayed cross correlation (relative to the reference point in the SOL).
- The time delays used are integer multiples of the framing time (7us).

Gas puff imaging of plasma blobs shows that blob sizes are similar in SFD and SD

- The first page is 50% contour plot of the 0-lag crosscorrelation between a reference point in the SOL and all other points in the images.
- The poloidal and radial autocorrelation lengths are a sub-set of this data.
- The net result: in all cases blobs are ~4cm FWHM in both radial and poloidal dimension.

Lawrence Livermore National Laboratory

